Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Fucosterol improves palmitic acid-induced oxidative stress, lipid droplet formation and insulin resistance in liver cells by mediating Keap1-Nrf2-lipocalin 13 axis

Zhekun Xiong1, Liming Gan1 , Chuntian Sun1, Hui Zhang1, Yanshan He1, Huixia Su1, Yiyuan Zheng2, Fanglian Liao1

1Department of Spleen, Stomach and Hepatobiliary, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong Province 528401; 2Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong Province 510405, China.

For correspondence:-  Liming Gan   Email: ganliming1112@163.com   Tel:+8676089980728

Accepted: 31 October 2022        Published: 30 November 2022

Citation: Xiong Z, Gan L, Sun C, Zhang H, He Y, Su H, et al. Fucosterol improves palmitic acid-induced oxidative stress, lipid droplet formation and insulin resistance in liver cells by mediating Keap1-Nrf2-lipocalin 13 axis. Trop J Pharm Res 2022; 21(11):2345-2351 doi: 10.4314/tjpr.v21i11.11

© 2022 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To determine the possible effects of fucosterol (FST) on non-alcoholic fatty liver disease (NAFLD), and the mechanisms involved.
Methods: The NAFLD model was constructed using palmitic acid (PA) induction, and the expression of NF-E2-related factor 2 (Nrf2), lipocalin 13 (LCN13) and Keap1 were analyzed by immunoblot. The oxidative stress of hepatocytes was determined via ELISA assay. In addition, the role of FST on lipid content and metabolism were evaluated by Oil Red O staining and immunoblot, while the levels of p-AKT, p-IRS1, and p-PI3K were evaluated by immunoblot assay.
Results: The data revealed that FST significantly increased the viability of PA-induced hepatocytes, and the expression levels of Nrf2 and LCN13 (p < 0.05). Fucosterol enhanced Keap1-Nrf2 mediated LCN13 expression, and alleviated PA-induced oxidative stress by contributing to Keap1-Nrf2-LCN13 axis. In addition, it significantly reduced (p < 0.05) lipid droplet formation, promoted lipid metabolism, and lowered insulin resistance by enhancing Keap1- Nrf2-LCN13 axis.
Conclusion: Fucosterol regulates Keap1-Nrf2-mediated LCN13 to aid the ameliorate palmitic acid-induced oxidative stress, lipid droplet formation and insulin resistance in liver cells.

Keywords: Non-alcoholic fatty liver disease (NAFLD), Fucosterol (FST), Keap1-Nrf2-LCN13 axis, Insulin resistance

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates